Recent trends in aquaculture innovation in the European Union: The role of HAKI

Laszlo Varadi

Research Institute for Fisheries, Aquaculture and Irrigation Szarvas, Hungary

The presentation

- 1. Facts and figures of EU aquaculture
- 2. Main challenges for the EU aquaculture sector
- 3. Response to challenges is innovation
- 4. HAKI in general
- 5. Examples of R & D projects for innovation

1. Facts and figures of EU aquaculture

Why aquaculture?

Radically Rethinking Agriculture for the 21st Century N. V. Fedoroff, et al. Science 327, 833 (2010); DOI: 10.1126/science.1186834

"Aquaculture is a part of the answer."

"Fish farming could be an option"

("Increased consumption of herbivorous fish")

Aquaculture production by European regions (volume)

Source: FAO FishstatPlus

Aquaculture production (excluding aquatic plants)

Source: FAO FishstatPlus

Aquaculture production by environment in EU 27 countries (2009)

Source: FAO, 2010

Principal farming systems

Fish supply-demand balance in the EU (2008)

Catches: Aquaculture: Non-food uses: Export:	5.20 Mt 1.23 Mt - 1.70 Mt - 2.07 Mt		
		Total supply:	2.66 Mt

Total consumption:2.00 Mt12.52 Mt

Import:	9.86 Mt
•	

74% of the total EU fish consumption is imported!

Source: AIPCE

Fish consumption in Europe

Source: FAO FishstatPlus

3. Main challenges for the EU aquaculture sector

Main challenges for the EU aquaculture sector

The challenge for European aquaculture is to achieve innovative and ECONOMIC GROWTH.

The industry says:

- We have to be competitive
- We have to be profitable
- We need a "level playing field"

Some specific challenges for the EU aquaculture sector

- **Stringent regulations** (environment, animal health etc.)
- Limited access to space and licensing
- Limited access to seed capital and loans
- Insufficiency of medicines and vaccines
- Industry fragmentation
- Pressure from imports
- Climate change (weather extremities)
- Variation in inputs (fish meal/oil, seed, energy, labour)
- **Economic crises** (consumer preferences, purchasing power)

3. Response to challenges is innovation

Innovative sector

- EATIP (Vision, R&D strategy, implementation plan)
- FEAP
- R&D institutions
- Innovative enterprises
- European organisations and networks (EUROFISH, AquaTnet, EFARO, NACEE etc.)

Enabling environment

- **Europe 2020** (smart, sustainable and inclusive development)
- Reform of the CFP
- New EFF
- EU Aquaculture Strategy ("New impetus")
- FP-7 KBBE
- Political will

Vision

European aquaculture is an environmentally, economically and socially sustainable activity, based on scientific evidences and consumer confidence

4. HAKI in general

Research Institute for Fisheries, Aquaculture and Irrigation

HAKI Szarvas, Hungary

Waters have always had an important role in social and economic development of the Körös-valley

Flooded areas around Szarvas, 1784

1906

Aquaculture research started in Hungary, when the "Royal Experimental Station for Fish Physiology and Waste Water Purification" was established

The la Bricsber appli infebruar ho 3 au

Main milestones of the development of HAKI

1906 Royal Experimental Station for Fish Physiology and Waste Water Purification, Budapest

> **1953** Fish Farm of the Research Institute for Irrigation and Melioration (ÖTKI), Szarvas (Fish Culture Research Institute, Budapest)

> > **1980** Fish Culture Research Institute (HAKI), Szarvas

2000 Research Institute for Fisheries, Aquaculture and Irrigation (HAKI) Szarvas

The center of HAKI

"Iskolaföld" fishpond complex of HAKI

The "HAKI complex" is a unique R&D, training and innovation center in fisheries, aquaculture and water management

HAKI

is one of the 9 research institutions of the

Ministry of Rural Development

Agricultural research institutes belonging to the Ministry of Rural Development

Main elements of R & D strategy of HAKI

- Multidisciplinary research in active international collaboration for the development of sustainable aquaculture and agriculture systems
- Facilitate the application of research results and improve flow of information between science and practice
- Participation in international development assistance programmes for the improvement of livelihood in developing countries

Main organisational units

(since 1st of July 2008)

Research Departments

- Fish Biology
- Aquatic Resources Management
- Aquaculture Systems

Centers

- Environmental Analytics (certified laboratory)
- Extension and Innovation
- International Aquaculture

The incomes of HAKI in 2010 (2.6 million Euro)

MRD core fund is cut by 30% in 2011

Staff of the institute in 2010

Total permanent staff:	77
Scientists:	23 (11 Ph.D.)
Technicians:	30
Support personnel:	24
Contracted scientists:	5
Average age:	45 years
(staff with university degree):	40 years
Ratio of females:	42 %

Staff should be reduced by 10 % in 2011

Active European collaboration

FAO FID/FIRA (Fisheries and Aquaculture Resources Use and Conservation Division; EIFAC (European Inland Fisheries Advisory Committee) Aquaculture Sub-Commission

EAS (European Aquaculture Society) President (2004-2006): Laszlo Varadi, HAKI director

EU funded projects and bilateral collaborations with institutions in EU member countries

NACEE, Network of Aquaculture Centers in Central and Eastern Europe (Coordinating institute is HAKI)

Network of Aquaculture Centres in Central and Eastern Europe

HAKI is coordinator of NACEE having 45 members from 15 CEE countries; NACEE is a registered NGO in Hungary; Headquarters is in Szarvas, Hungary

Active participation in development assistance projects world-wide

Expert consultancy

Postgraduate training

Supply of high quality common carp

Active collaboration with Asian countries

Main EU funded projects

EUROCARP: AQUAMAX: ROSA: AQUASEM: PESCALEX: CLEANHATCH: AQUAEXCEL: 174,000 Euro (2006-2008/2011) 375,000 Euro (2006-2009/2011) 180,000 Euro (2009-2010/2011) 51,000 Euro (2009-2013) 32,000 Euro (2009-2012) 245,000 Euro (2010-2012) 250,000 Euro (2011-2015)

Hungarian ODA Projects in Asia

Vietnam:

Technical assistance to the development of fish seed and fish feed supply (*Budget: 500,000 USD*)

Vietnam: ODA "Micro Project"

Assessment the possibility of the construction of small feed mills in the region (*Budget: 13,000 USD*)

Laos: Tied Aid Loan Project

Development of fish seed and fish feed supply (Budget: 8.6 million USD)

5. Examples of R & D projects for innovation

Combined intensive-extensive system

Effluent treatment in constructed wetland

Multi-functional pond fish farm

Higher and diversified farm income

the second s

New species and new technologies 1/2

African catfish Clarias gariepinus

New species and new technologies 2/2

Paddle fish Polyodon spathula

Gene banking and breeding of common carp

Live gene bank of common carp varieties

Genetic characterisation of common carp

Better growth and disease resistance

The use of Chinese herbs as immunostimulants for cultured fish species

Healthy fish - healthy environment- healthy consumers

Freshwater aquaculture in 2020

Fish ponds integrated in the natural environment, providing fish and public goods Sustainable culture-based fisheries in natural water bodies

Intensive systems providing fish with zero- or minimal environmental impact

Thank you for your attention